Hemin-mediated dissociation of erythrocyte membrane skeletal proteins.
نویسندگان
چکیده
Spectrin tetramers and oligomers in normal erythrocytes are cross-linked by actin and protein 4.1 to form a two-dimensional membrane skeletal network. In the present study, we find that hemin, a breakdown product of hemoglobin, progressively (a) alters the conformation of spectrin as revealed by electron microscope studies and by the decreased resistance of spectrin to proteolytic degradation, (b) alters the conformation of protein 4.1 as revealed by the increased mobility of protein 4.1 on nondenaturing gel electrophoresis, (c) weakens spectrin dimer alpha beta-dimer alpha beta, spectrin alpha-spectrin beta, as well as spectrin-protein 4.1 associations as analyzed by nondenaturing gel electrophoresis, and (d) diminishes the structural stability of erythrocyte membrane skeletons (i.e. Triton-insoluble ghost residues) subjected to mechanical shearing. Since hemin may be liberated from oxidized or unstable mutant hemoglobin under pathological conditions, these hemin-induced effects on spectrin, protein 4.1, and membrane skeletal stability may play a role in the membrane lesion of these erythrocytes.
منابع مشابه
Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin.
Oxidative injury to hemoglobin (Hb) leads to formation of methemoglobin (MetHb), reversible hemichromes (rHCRs), and irreversible hemichromes (iHCRs). iHCRs precipitate and form Heinz bodies that attach to the red cell membrane causing injury that leads to hemolysis. The molecular mechanisms of this membrane damage have not been fully elucidated. We have studied the effect of Hb oxidation produ...
متن کاملErythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins.
Erythrocyte skeletal proteins are known to play an important role in determining membrane deformability. In order to see whether transmembrane proteins also influence deformability and, if so, whether this influence is mediated by an interaction with the membrane skeleton, we examined the effect on deformability of ligands specific for transmembrane proteins. We found membrane deformability mar...
متن کاملThe Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men
High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...
متن کاملBinding of heme by glutathione S-transferase: a possible role of the erythrocyte enzyme.
Human erythrocyte glutathione S-transferase activity is inhibited, probably competitively, by hemin with a Ki of 10(-7) M. It is postulated that glutathione S-transferase functions physiologically as a hemin-binding and/or transport protein in developing erythroid cells.
متن کاملAnalysis of integral membrane protein contributions to the deformability and stability of the human erythrocyte membrane.
Three major hypotheses have been proposed to explain the role of membrane-spanning proteins in establishing/maintaining membrane stability. These hypotheses ascribe the essential contribution of integral membrane proteins to (i) their ability to anchor the membrane skeleton to the lipid bilayer, (ii) their capacity to bind and stabilize membrane lipids, and (iii) their ability to influence and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 260 22 شماره
صفحات -
تاریخ انتشار 1985